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Majority and Positional Voting in 
a Probabilistic Framework 

SALVADOR BARBERA 
University of Bilbao 

1. INTRODUCTION 
A lot of attention has been devoted recently to the study of social decision-making pro- 
cedures which combine voting with chance (for different approaches to the subject, see 
Zeckhauser (1969), Fishburn (1972a, b, 1978) Intriligator (1973) and Barbera and Sonnen- 
schein (1977).) Decision schemes are procedures of this kind which assign a lottery on 
the set of alternatives to each N-tuple of rankings of alternatives. It is interpreted that 
they specify the probability with which each of the alternatives open to society is to be 
chosen, on the basis of the ordinal preferences on these alternatives expressed by the 
members of this society. 

In this paper I define two wide classes of decision schemes-supporting size and point 
voting decision schemes-which can be viewed as natural adaptations to the probabilistic 
framework of two basic principles used in making deterministic choices: majority and 
positional voting. It is noted that these two principles, which are in general incompatible 
within a deterministic framework, can be jointly satisfied within the setting of decision 
schemes by what I call simple decision schemes, a third class which is the intersection of 
the two above. The theorems in the paper characterize these three classes in terms of the 
properties they satisfy. Some of these properties are, in turn, adaptations to the new frame- 
work of standard conditions in social choice theory: anonymity, neutrality and strategy- 
proofness. Two other new properties are introduced, which I call alternative independence 
and individual independence. 

The following results are obtained: 
A decision scheme is a point-voting decision scheme if and only if it is anonymous, 
neutral, strategy-proof and individual independent. 
A decision scheme is a supporting size decision scheme if and only if it is anonymous, 
neutral, strategy-proof and alternative independent. 
A decision scheme is a simple decision scheme if and only if it is anonymous, neutral, 
strategy-proof, individual independent and alternative independent. 
It may be worth relating the present results with Gibbard's characterization of strategy- 

proof decision schems. Gibbard (1977) proves that all such decision schemes can be ex- 
pressed as the probability mixture of decision schemes, each of which is either unilateral or 
duple (where a decision scheme is unilateral if a single individual is the sole determiner of 
the probabilities assigned to alternatives, and duple if only two alternatives ever get a 
positive probability of being chosen). This has often been taken to be a very negative 
result, and yet point voting, supporting size and simple decision schemes are all strategy- 
proof. Is there a contradiction here? Certainly not a formal one: the latter are sub- 
classes of the class characterized by Gibbard, and my proofs too rely on Gibbard's. The 
question may be more one of interpretation. Unilateral (resp. duple) decision schemes 
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380 REVIEW OF ECONOMIC STUDIES 

are certainly unattractive, because they treat individuals (resp. alternatives) in a discrim- 
inatory way. Yet, the probability mixtures of such schemes need not be themselves dis- 
criminatory. The results presented here show that there are indeed anonymous and neutral 
strategy-proof decision schemes; that is, schemes that are " nice " with regard to the same 
equal-treatment requirements which would make unilateral and duple schemes unaccept- 
able. And, moreover, that all such decision schemes take very natural forms: they are not 
complicated to describe and to operate, and they are based upon the most widely accepted 
principles for social choice. This does not mean that these procedures are not flawed; 
if they are, though, it is not because they can be decomposed into unattractive components. 
Rather, it is because while meeting the interesting conditions pointed out here, they are 
not able to satisfy some others. On this, see Zeckhauser (1973), Barber'a (1977a, b) and 
Gibbard (1977, Section 5). But then, finding out about such trade-offs, and seeing what 
can be done within the restrictions they impose, are natural tasks for social choice theory. 

2. NOTATION AND DEFINITIONS' 
Let V be a finite set, called the set of alternatives. Elements of V are denoted by x, y, z, 
w, ... M denotes the cardinality of V. 

A ranking2 of V is a binary relation P which, for all x and y, satisfies: 
(i) Connectedness: x # y-+(xPyvyPx) 

(ii) Asymmetry: xPy-+ -yPx 
(iii) Transitivity: (xPy & yPz)-+xPz. 

Let I = {1, 2, ..., N} be an initial segment of the positive integers. I is called the 
set of individuals, and N is the number of individuals. 

A ranking N-tuple over V is an N-tuple (P,, ..., PN) of rankings of V. Ranking N- 
tuples are denoted by P, P', P*, ... Ranking N-tuples are interpreted as functions which 
assign to each individual i E I the ranking Pi of V. 

A measure over V as a function m which assigns a non-negative number m(x) to each 
member x of V. The sum Exevm(x) is called the weight of the measure. A lottery is a 
measure of weight one. Lotteries will be denoted by 1. 

A scheme for {I, V} is a function from the set of ranking N-tuples over V to the set of 
measures over Vwhich have a fixed weight ac. The value ac is called the weight of the scheme. 
Schemes will be denoted byf,f', .. 

A decision scheme is a scheme of weight one. Decision schemes will be denoted by 
d, d', 

A decision scheme is, thus, a function which determines the probability with which 
each of the alternatives in V is to be selected, given the preferences of individuals expressed 
by a ranking N-tuple. The value of a decision scheme d at P is written dP, and the proba- 
bility that dP assigns to an alternative x is denoted by d(x, P). 

3. THREE CLASSES OF SCHEMES 
Three specific classes of schemes are now defined. The first two of them-supporting 
size and point voting schemes-can be viewed as the probabilistic counterpart of well- 
known types of deterministic social choice procedures. The third class-simple schemes- 
will prove able to encompass the spirit of the two preceding ones. 

The rank of an alternative x for an individual i within a ranking N-tuple P is defined as 
r(i, x, P) = #{Y I y I V &yPix} + 1. 

Clearly, 1 < r(i, x, P) < M, for all x, i and P. 
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BARBERA MAJORITY AND POSITIONAL VOTING 381 

The supporting size for an alternative x over an alternative y within a ranking N-tuple 
P is defined as 

s(x, y, P)= #{i i E I & xPiy}. 

Clearly, 0 _ s(x, y, P) _ N and s(x, y, P) +s(y, x, P) = N for all x,y and P. 
A scheme f for (I, V) is a point voting scheme if there exists an M-dimensional vector 

of real numbers (a1, ..., aM), to be called a positional scoring vector, such that 

(i) a, > a2 >-*.. > aM >-0 
(ii) for all P and x,f(x, P) = EieIar(i,x,p). 

It will be said, in this case, thatf is representable as a point voting scheme with positional 
scoring vector (a1, ..., aM). 

Clearly, if d is a point voting decision scheme, it must be that Zi{1, ..., M)ai = 1/N. 
Point voting schemes operate in the following way: each alternative is given a score 

ai every time that an individual ranks it in ith position. The total weight assigned to an 
alternative for a given ranking N-tuple is the sum of the scores that it has obtained on the 
basis of the preferences of each individual. In the case of point voting decision schemes the 
positional scoring vector is chosen so that the weights assigned to the different alternatives 
are probability distributions over V. 

A scheme f for (I, V) is a supporting size scheme iff there exists an N+ 1-dimensional 
vector of real numbers (bN, ..., bo), to be called the supporting size scoring vector, such that 

(i) bN > bN-1 _ ... _ bo _ ? 
(ii) 3K such that bj+bN.j = Kfor allj < N/2 

(iii) for all P and x, f(x, P) = Ez ev- {X}bs(x,Z, P). 

We say then that f is representable as a supporting size scheme with supporting size 
scoring vector (bN, ..., bo). Clearly, if d is a supporting size decision scheme it must 
be that, for N/2 _ j < N, bj + bN.j = 2/M(M- 1). 

Supporting size schemes operate on the basis of pairwise comparisons among alter- 
natives. Ifj individuals prefer x to y, then x is assigned score bi. The total weight assigned 
to an alternative is the sum of the scores it has obtained on the basis of pairwise com- 
parisons with all others. In the case of supporting size decision schemes, the supporting 
size scoring vector is chosen so that the weights assigned to the different alternatives are 
probability distributions over V. 

Point voting schemes can be seen as a natural probabilistic counterpart of a well- 
known type of deterministic rules for social choice, variously called scoring functions, 
representable voting functions, etc., and of which Borda's count is a classical example. 

Supporting size schemes, on the other hand, convey the spirit of majority voting into 
the probabilistic framework. However, since decision schemes are more versatile than their 
deterministic counterparts, supporting size schemes are able to encompass, simultaneously, 
the features of simple and qualified majority voting. 

Within a deterministic setting, the principles of majority and positional voting are 
incompatible when the number of alternatives is greater than two. This is not the case 
within the framework of decision schemes, since there may exist decision schemes which 
are representable both as point voting and supporting size schemes. The class of simple 
schemes, which is defined below, will prove to be the set of schemes which are representable 
both as supporting size and as point voting schemes. 

Simple schemes assign a fixed weight to each alternative each time that it appears 
above some other in some individual ranking. The probability that they attach to each 
alternative is given by the weights that correspond to it on the basis of all possible pairwise 
comparisons with other alternatives over every individual, plus a constant term. 
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382 REVIEW OF ECONOMIC STUDIES 

Given x, y E V, x = y, and a ranking N-tuple P, let 

vi(P) = 
I if xPy 

A scheme f is a simple scheme iff there exist numbers q and k such that 

(i) q > 0, k > 0 
(ii) for all P and x, f(x, P) = Ey v- x} E ijqvUy(P)+k. 
Clearly, if d is a simple decision scheme, it must be that q = 2(1 - Mk)/M(M- 1)N. 
That some decision schemes can be represented in several forms is shown by the 

following example. Where M = 3 and N = 4, the same decision scheme can be repre- 
sented as: 

a supporting size decision scheme, with supporting size scoring vector (5/18, 4/18, 
3/18, 2/18, 1/18), 

a point voting decision scheme, with positional scoring vector (5/36, 3/36, 1/36), and 

a simple decision scheme, with q = 1/18 and k = 2/18. 

This example suggests a number of regularities in the general relationship among 
these three types of decision schemes, which are made explicit in the following proposition. 

Proposition 1. The set of simple decision schemes is the intersection of the sets of point 
voting and supporting size decision schemes. A decision scheme is representable as both a 
point voting and a supporting size decision scheme if and only if the components of the scoring 
vector in its representation in one of these forms constitute an arithmetic progression. 

The necessary elements to show this proposition are introduced in the rest of the paper; 
they are collected into a formal proof in the Appendix. 

4. SOME PROPERTIES OF SCHEMES 

We begin by defining three conditions which adapt to the probabilistic framework the 
notions of anonymity, neutrality and strategy-proofness. 

A permutation is a one-to-one function from a finite set onto itself. 
Given a permutation p on the set of alternatives and a preference ranking P, PP is 

defined so that, for all x, y E V, xPy<->p(x)PPp(y). Given p and an N-tuple of rankings 
P = (P1, ..., PN), PP is defined to be the N-tuple (Pa, ..., PPN). 

Given a permutation a on the set of individuals and an N-tuple of individual rankings 
P = (P1, ..., PN), PC is defined to be the N-tuple of rankings PC = (Pa-1 (1) ..., Pa-I1(N)). 

A scheme f is anonymous iff, given any permutation a on the set of individuals, 
f(x, P) = f(x, Pf) for all x E V and every N-tuple of rankings P. 

A schemef is neutral iff, given any permutation p on the set of alternatives, 

f(x, P) = f(p(x), PP) 
for all x E V and every N-tuple of rankings P. 

Thus, an anonymous scheme is one which does not discriminate among individuals, 
and a neutral scheme is one that does not discriminate among alternatives. 

P and P' agree off k iff (Vi) [(i # k)-*Pi = P]. 
P/kP iS the ranking N-tuple P' such that P' = P and P' agrees with P off k. 
A utility scale U over Vis an assignment of real numbers to the members of V. Where 

U is a utility scale over V and I is a lottery over V, the expected utility U(l) of I on scale U 
is defined by U(l) = ,xev U(x).l(x). 
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Utility scale Ufits a ranking P iff, for all x, y E V, 
U(x) > U(y)+-+xPy. 

A decision scheme d is potentially manipulable by k at P if there are a utility scale U 
which fits Pk and a ranking Pk of V such that P' = PlkPk and U(dP') > U(dP). 

d is manipulable iff there are an individual k and a ranking N-tuple P such that d is 
potentially manipulable by k at P. Otherwise, d is strategy-proof. 

If d is potentially manipulable and individual k is endowed with utility scale U, he has 
an incentive to find out about the preferences that other individuals will declare and, 
eventually, to misrepresent his preferences when by doing so he is able to change the social 
ranking N-tuple from P to PlkPk- 

If, on the contrary, d is strategy-proof, then no single agent can ever find it advan- 
tageous to misrepresent his preferences, and there are no incentives for any individual to 
engage in non-cooperative strategic considerations. 

5. ANONYMOUS, NEUTRAL AND STRATEGY-PROOF 
DECISION SCHEMES 

A scheme f is a probability mixture of schemes fl, ..., f,,, iff there is a sequence o,. am 
where xi > 0 for all i E {1, ..., m} such that, for every P and x, 

f(X, P) = 01f1(x, P) + ... +Xamfm(x, P). 
Wherefis such a probability mixture, I will writef = octfl + ... + ctmfm = Ei e m} OCifi. 

By definition, f" = f-f ' iff f = f ' +f". 
Clearly, if a decision scheme d is the probability mixture of decision schemes d1, ..., di, 

it has to be that M1. }c i = 1. 
The starting point for the results to be presented here is given by the following theorem. 

Theorem 1. A decision scheme is anonymous, neutral and strategy-proof iff it is a proba- 
bility mixture of a point voting and a supporting size decision scheme. 

A detailed proof of this can be found in Barber'a (1978). I will provide here an outline 
of the proof, which in turn rests upon the already mentioned characterization of strategy- 
proof decision schemes due to Gibbard (1977). Let us start by some definitions. A set X 
of alternatives heads a ranking Pk if all alternatives in X are preferred to those in V- X 
according to Pk. A decision scheme d is localized iff for any k, P, P' and X such that X 
heads both Pk and P', Zxex d(x, PIPk) = Zxex d(x, P). 

A switch is a reversal of two adjacent alternatives in a ranking. A decision scheme 
is non-perverse if switching an alternative upward never decreases its probability. It is 
unilateral if a single individual is the sole determiner of the probabilities assigned to alter- 
natives. It is duple if only two alternatives ever get a positive probability of being 
chosen.3 Gibbard proves that a decision scheme is strategy-proof if and only if it is a 
probability mixture of decision schemes, each of which is non-perverse, localized and either 
unilateral or duple. 

Let's now go to the proof of Theorem 1. If d is anonymous, neutral and strategy-proof, 
it can be decomposed in such a way that no individual has a unilateral component unless 
all others have an identical unilateral component with identical weights (by anonymity); 
moreover, the probabilities assigned to different alternatives under different profiles by 
these unilateral components should only depend on the place of the alternative in the 
ranking of the relevant individual (by neutrality). The equal-weights probability mixture 
of these identical unilateral components can be represented as a point voting decision 
scheme, whose positional scoring vector is given by the contribution of each individual 
to the probability of an alternative being chosen on the basis of this alternative's position 
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in that individual's ranking. Similarly, no pair of alternatives will have a duple com- 
ponent in the decomposition of a neutral anonymous and strategy-proof decision scheme 
unless all other pairs of alternatives have an identical duple component with identical 
weights (by neutrality). The probabilities assigned by these duple components to each 
alternative in that pair under different profiles should only depend on the number of 
individuals who support one alternative over the other (by anonymity). The equal-weights 
probability mixture of these identical duple components can be represented as a supporting 
size decision scheme, with scoring vector determined by the contribution of given-size 
groups of individuals to the probability of an alternative being chosen when they support 
it over some alternative. This outlines the necessity part of the proof. As for sufficiency, 
it should be clear by now that point voting schemes, supporting size schemes and their 
probability mixtures can be decomposed into probability mixtures of unilateral and duple 
schemes. This suffices for strategy-proofness; their neutrality and anonymity are obvious. 

Observe that the characterization of anonymous, neutral and strategy-proof decision 
schemes given by Theorem 1 need not lead to a unique representation. For instance, 
it is clear from the example in Section 3 that, where M = 3 and N = 4, and 

dS is the supporting size decision scheme with supporting size scoring vector (5/18, 
4/18, 3/18, 2/18, 1/18), while 
dP is the point voting decision scheme with positional scoring vector (5/36, 3/36, 1/36), 

all probability mixtures in the form ads+ (1 - c)dP represent the same decision scheme. 
In view of this, some new definitions will now be introduced, which will lead to a 

unique decomposition of neutral, anonymous and strategy-proof decision schemes. This 
decomposition will prove instrumental for the characterization of point voting, supporting 
size and simple decision schemes, a task to be undertaken in Section 7. 

A pure point voting scheme is one whose positional scoring vector satisfies 

(i) aM = 0 

(ii) for some j, aj +1-aj aj-aj_1, or (VIj)aj = 0. 
A pure supporting size scheme is one whose supporting size scoring vector (bN, ..., bo) 

satisfies 

(i) bo = 0 

(ii) for some h, bh+l-bh = bh-bh-l, or (Vj)bj = 0. 
Proposition 2. Every point voting scheme can be uniquely decomposed into the sum of 

a pure point voting scheme and a simple scheme. Every supporting size scheme can be 
uniquely decomposed into the sum of a pure supporting size scheme and a simple scheme. 

Proof. Let f be any point voting scheme, and a = (a1, ..., aM) its positional scoring 
vector. Let a' = (al-aM, ..., am-- am 0) = (a', a' - a,). Let A = min (a>_1-a-), 
and a" = (a' -(M-1 )A, a'-(M-2)A, ..., a' 1-A, 0). 

Then, f = f' +f", where 
(i) f" is a pure point voting scheme with positional scoring vector a" 
(ii) f' is a simple scheme, with q = A and k = NaM. 

It suffices to note that, for all i, x and P, 
r(i, x, P) = M-EY e Y, y * xvxy(P). 

Thus, 

f(x, P) = EicI ar(i, x, P) = Ei e I (a' ,x,p)+am+(M-r(i, x, P))A) = Ei eI all 
+i e I aM + Zi e I Ey e V, y ? x vxy(P) = f (x, P) +f(x, P). 
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The proof that the decomposition is unique is left to the reader. 
Similarly, notice that s(x, y, P) = Ei 6Iv y(P). Iff is a supporting size scheme with 

supporting size vector (bN, ..., bo) let b' = bN-bo, ..., b1-bo, 0), 3 = min (bh-b 1) and 
b = (bN-Nb, ..., b'-3, 0). 

Now for any x and P, 

f(X, P) = EyZev,y x bS(X,Y,p) = Eyev,y x b S(X,Y,p)+Zyv,Y + x61 vxy(P)e+(M-I)bo. 
Therefore,f can be decomposed as the sum off ' and f", wheref " is a pure supporting 

size scheme with supporting size scoring vector b" and f' is a simple scheme with q = 3 
and k = (M- I)bo. 

The following assertions will be of use in what follows: 

The sum of a simple and a point voting scheme is a point voting scheme. 
The sum of a simple and a supporting size scheme is a supporting size scheme. 
The sum of two simple schemes is a simple scheme. 

Now we can provide a partial restatement of Theorem 1 in terms of a unique de- 
composition. 

Theorem 1'. Every neutral, anonymous and strategy-proof decision scheme can be 
uniquely decomposed into the sum of a pure point voting scheme, a pure supporting size 
scheme and a simple scheme. 

Proof. Let d be neutral, anonymous and strategy-proof. There will exist 0 < o ? 1, 
dP and ds such that d = adP + (1- a)ds (by Theorem 1), where dP is a point voting decision 
scheme and ds is a supporting size decision scheme. Where dP = dP + d' and dS= ds+d" 
are the unique decompositions of dP and ds, with d', d" simple schemes, we have that 
d = adP + (1- oc)ds + d, where d = xd' + (1- x)d" is a simple scheme, adP is a point voting 
scheme and (1 - a)ds is a supporting size scheme. 

It is left to the reader to check that the decomposition must be unique, even if the 
initial decomposition need not be. 

6. TWO INDEPENDENCE CONDITIONS 

Two new conditions on schemes are now introduced which will prove instrumental in 
characterizing the classes of point voting, supporting size and simple decision schemes. 
The two are conditions of independence. 

One could think of the probability assigned by a scheme to an alternative, say x, as 
the result of a number of influencing factors and speak about " the part of x's probability 
which can be attributed to y's position relative to x " or " the part of x's probability 
which can be attributed to the preferences of the ith individual ". In general, though, 
these expressions may not have any meaning. However, I will argue that there exist 
circumstances where they do. Assume, for a moment, that we consider cases where 
expressions like the above are well defined. Then, we could require that " for any two 
N-tuples P and P' which agree on the ranking of x with respect to y, the contribution to 
x's probability which can be attributed to y's position should be the same for P and P' ". 

The first condition to be defined, that of alternative independence, attempts to formalize 
this notion. 

Similarly, one could think of a condition requiring independence among each indi- 
vidual's contribution to the probability of an alternative, so that " for any two ranking 
N-tuples P and P' which agree on an individual i's ranking, the contribution to the prob- 
ability of any x e V which can be attributed to i be the same for P and P' ". This is the 
second notion to be formalized, by means of the condition of individual-independence. 

What we need to do first is to identify the circumstances under which it makes sense 
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to talk about some alternative or some individual's " contribution " to x's probability. 
In fact, rather than such " contribution " what I will refer to is the difference between 
the contributions for certain situations. 

A switch is a reversal of two adjacent alternatives in a ranking. XPk !y will mean that 
x is immediately above y in ranking Pk. Where xPk!y, Pyx is the ranking which switches 
x and y in Pk and permutes no other alternatives. 

Consider two ranking N-tuples P and P' such that, for a given pair of alternatives, 
x and y, 

(i) for all i, either xPi!y or yPi!x 
(ii) for any i, if xP !y either Pi = Pi or P. = PTx 

if yPi!x either Pi = Pi or P. = P-y 

(iii) for all i and z 0 {x, y}, r(i, z, P) = r(i, z, P'). 

We then say that C(x, y, P, P') = f(x, P') -f(x, P) is the gain in x's probability 
which is imputable to y due to the change in preference from P to P', under scheme f 

A scheme f is alternative-independent iff, given any two pairs of ranking N-tuples 
P, P', P, P', and any two alternatives x, y such that 

(i) Conditions (i), (ii) and (iii) above hold for x, y, P, P' and also for x, y, P, P' 

(ii) For all i, xPiy+-*xPiy and xPIy+-*xy, we have that 

C(x, y, P, P') = C(x, y, P, P'). 
Requirement (i) restricts the definition to sets of ranking N-tuples for which it makes 

sense to speak about the gain in x's probability which is imputable to y. Requirement (ii) 
specifies that the ranking of x relative to y should be the same in P as in P, and in P' as 
in P', for all individuals. The condition of alternative-independence then states that, under 
the conditions above, the gain in x's probability from P to P' should be the same as the 
gain from P to P'. 

Consider two ranking N-tuples P, P' such that P' = PIkPk. We then say, for any 
x E V, that D(x, P, P') = f(x, P') -f(x, P) is the gain in x's probability which is imputable 
to k due to the change in preferences from P to P', under scheme f 

Scheme f is individual-independent iff, for every k, given any two pairs of ranking 
N-tuples P, P', P, P', such that 

(i) P' = PlkPk, PF = PIkPk 

(ii) Pk = Pk, Pk = k, 

we have that D(x, P, P') = D(x, P, F') for all x E V. 
Requirement (i) restricts the definition to sets of ranking N-tuples for which it makes 

sense to speak about the gain in x's probability which is imputable to k. Requirement (ii) 
specifies that the change in preferences from Pk to Pk should be the same as in the one from 
Pk to PR. The condition of individual-independence then states that the gain in x's proba- 
bility from P to P' should be the same as from P to F'. 

7. THE CHARACTERIZATION OF POINT VOTING, 
SUPPORTING SIZE AND SIMPLE DECISION SCHEMES 

Theorem 2. A decision scheme is a point voting decision scheme if it is anonymous, 
neutral, strategy-proof and individual-independent. 

Proof. The proof that all point voting decision schemes satisfy the requirements above 
is left to the reader. 
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Suppose d is anonymous, neutral, strategy-proof and individual-independent. By 
Proposition 2, it can be expressed as the sum d = f1 +f2 +f3, where f1 is a pure point 
voting scheme, f2 is a simple scheme and f3 is a pure supporting size scheme. Let a trivial 
scheme be one which assigns zero weight to all alternatives for every ranking N-tuple. 

Iff3 is trivial, the conclusion follows from the fact that the sum of a point voting 
and a simple scheme is a point voting scheme. Suppose, then, thatf3 is non-trivial. Let 
(a,, ..., am) be the positional scoring vector associated with f1 and (bN, ..., bo) be the 
supporting size scoring vector associated withf3. Sincef3 is a pure supporting size scheme, 
there exists an h such that bh+l-bh o bh-bh-l. 

For given x, y, let P be such that 

for 1 <i< h-I r(i,x,P)= k-I & r(i,y,P)=k 

for h < j ? N r(j, x, P) = k & r(j,y,P)=k-1. 

Letp' = lhPh' P" = P Ih+lPh'y+l P' = P IhPhy. Notice that P" = P"'/lPhy' 
By definition, 

s(x, y, P) = h-1, s(x, y, P') = h, s(x, y, P") = h+ 1 and s(x, y, P"') = h. 

Thus, by individual independence, and given the relationship in which P, P', P"' and 
P" stand, it should be true that 

D(x, P, P') = D(x, P"', P"). 
Yet, 

D(x, P, P') = d(x, P')-d(x, P) = f1(x, P')-f1(x, P) +f2(x, P')-f2(x, P)+f3(x, P') 

-f3(x, P), 
while 

D(x, P"', P") = fl(X, P") -f1(X, P"') +f2(x, P") -f2(X, P"') +f3(x, P") -f3(x, P"'). 

We have, by construction, 

f1(x, P')-f1(x, P) = f1(x, P")-f1(x, P"') = ak. 1-ak, 
and 

f2(x, P')-f2(x, P) = f2(x, P")-f2(x, P"') - q 
while 

f3(x, P') -f3(x, P) = bh-bh-l # bh+l-bh = f3(x, P")-f3(x, P"'), 

thus contradicting the fact that D(x, P, P') = D(x, P"', P"). 

Theorem 3. A decision scheme is a supporting size decision scheme if it is anonymous, 
neutral, strategy-proof and alternative-independent. 

Proof. The proof that all supporting size decision schemes satisfy the requirements 
above is left to the reader. 

Suppose d is anonymous, neutral, strategy-proof and alternative-independent. By 
Proposition 2, it can be expressed as the sum d = fi +f2 +f3J where fi is a pure point 
voting scheme, f2- is a simple scheme and f3 is a pure supporting size scheme. 

Iffi is trivial, the conclusion follows from the fact that the sum of a supporting size 
and a simple scheme is a supporting size scheme. 

Suppose f1 is non-trivial. Then, there must exist k such that ak-l-ak # ak-ak+ 1. 

Let P be such that, for some given t (I < t ? N), 
for 0 < i < t-I rj(x, P) = k-I & ri(y, P) = k 

for t < i < N ri(x, P) = k & ri(y, P) = k-1 
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Let P' be such that 

for 0 <i<t-1 ri(x,P') =k & ri(y, P') = k+1 
for t<i_N ri(x,P')=k+1 & ri(y,P')=k. 
Let 

P- P/,PXY and P"' = P'I,Pt"Y. 
By alternative-independence, it should be true that 

C(x, y, P, P") = C(x, y,P', "'). 
We have 
C(x, y, P, P") = d(x, P) - d(x, P") = fi(x, P) -f1(x, P") +f2(x, P) -f2(x, P") 

+f3(x, P)-f3(x, P"), 
C(X, y, F', P") = fl (X, P') -f1(X, P"') +f2(x, P')-f2(X, P"') +f3(x, P') -f3(x, P"'). 

Yet, 
f3(x, P)-f3(x, P") = f3(x, P')-f3(x, P"') = bt 1 -bt, 

and 
f2(x, P)-f2(x, P") = f2(x, P')-f2(x, P"') = -q, 

while 
f1(x, P)-f1(x, P") = ak.l-ak # ak+ =fl(X, P')-f1(X, PF). 

This would contradict the fact that C(x, y, P, P") C(x, y, P', P"'). 

Theorem 4. A decision scheme is neutral, anonymous, strategy-proof, alternative- 
independent and individual-independent iff it is a simple decision scheme. 

Proof. The proof that all simple decision schemes satisfy the conditions above is left 
to the reader. 

Suppose d meets the expressed requirements. Then, it can be decomposed into a 
sum d = f1 +f2 +f3, where f1 is a pure point voting scheme, f2 is a simple scheme and f3 
is a pure supporting size scheme. It is clear from the proof of Theorem 2 thatf3 should be 
trivial for d to be individual-independent. Similarly, from the proof of Theorem 3, fi 
should be trivial for d to be alternative-independent. Thus, it must be that d = f2, a 
simple scheme. 

APPENDIX 
Proof of Proposition 1. The first part of the proposition follows immediately from 

Theorems 2, 3 and 4. To prove the second part, first notice that simple decision schemes 
are representable both as point voting and supporting size decision schemes, in such a way 
that the elements of the scoring vector for each representation form an arithmetic progres- 
sion. This comes from the fact that, as noted in the proof of Proposition 2, 

r(i, x, P) = M-ZEy e v. y v xvit(F) 

and s(x, y, P) = E i6v'y(P). It follows from this that, given a simple scheme with para- 
meters q and k, it can also be expressed as a point voting scheme with positional scoring 
vector elements given by aM-h = k/N+hq (O < h ? M- 1); and also as a supporting size 
decision scheme with scoring vector elements given by bh = k/(M- 1) +hq (0 ? h < N). 

Notice next that if a decision scheme is representable as a point voting decision 
scheme (resp., as a supporting size decision scheme) and the elements of its scoring vector 
form an arithmetic progression, then it can be represented as a simple decision scheme. 
This is clear from the construction used in the proof of Proposition 2, and the fact that 
constant schemes can always be represented as simple schemes. 
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Now, suppose d is a supporting size decision scheme. If the elements of its scoring 
vector form an arithmetic progression, d can be expressed as a simple decision scheme, 
and thus also as a point voting decision scheme with a scoring vector whose elements form 
an arithmetic progression. If, on the contrary, the elements of its scoring vector as a 
supporting size decision scheme do not form an arithmetic progression, then d cannot be 
represented as a point voting decision scheme. For, suppose it could. Then d would be- 
long to the intersection of the sets of point voting and supporting size decision schemes 
and would thus be representable as a simple decision scheme. But in this case the elements 
of the scoring vector in its representation as a supporting size decision scheme would form 
an arithmetic progression, in contradiction with our hypothesis. 

A parallel argument starting from a point voting decision scheme d' would complete 
the proof of the Proposition. 
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NOTES 
1. The notation used here follows that in Gibbard (1977) whenever possible. 
2. Notice that rankings do not allow for indifference among alternatives. This allows for simpler 

descriptions of the rules and for shorter proofs, but is not a crucial assumption. 
3. These definitions are kept informal, since they will only be used in the heuristic argument that 

follows. 
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